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The dynamical structure of equilibrium fluids is conveniently described by the 
van Hove functions G(r, 1) and G,(r, t). The Fourier transforms S(k, CO) and 
S,(k, w) are known experimentally in quite a few instances. For small k and CO, 
S(k, w) approaches its hydrodynamic form reflecting the long-time behaviour of 
G(r, t). The short-time behaviour of G(r, t) is closely related to the sum rules for 
S(k, o), often used in assesment and correlation of experimental results. In this 
paper we discuss an exact kinetic equation valid on any time scale, directly related 
to the function 

I,&, I) -= j” dr eik’GsO., t) .= 1’ 2 !& e-‘““S,(k, w), 
” -.x (1) 

(2) 

where the bar stands for the average in the canonical ensemble. 
It was Nelkin and his coworkers [I] who first introduced an auxiliary distribution 

functionf;(k, v, 1), a function of the velocity v, so defined that 

f,(k, r> = j- dvf,(k v, 1). (3) 

As noted in a preliminary report [2], it is possible to construct a kinetic equation 
of a general form 

(; i ikv)ff,(k, v, t) - it dr G(k, v, r)f,(k, v, I - T) 
0 (4) 

with a time-dependent kernel G(k, v, t). General kinetic equations with convolution 
time integral (thus nonlocal in time) were first derived and discussed by Prigogine 

* This paper is based on lectures given at the Spatind Conference on Statistical Mechanics, 
Norway in January 1969. 
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and his coworkers [3]. For the particular case considered here, the kernel G is 
“dressed” and not “bare”, as it contains also the statistical averages with full 
intermolecular potential. The kinetic equation is linear and no additional linear- 
ization is necessary. No additional terms corresponding to the Prigogine-Resibois 
“destruction term” make their appearance. Finally, the sum rules for S,(k, w) 
corresponding I, to the short-time behaviour of F, and offs , are verified exactly. 

The derivation of the kinetic Eq. (4) is made possible by our ability to guess the 
appropriate projection operator. The canonical-ensemble definition of fS is 

f,(k, v, t) = j drN eWikrl f dv$i’ FN(t), (5) 

where FN(f) verifies the Liouville equation 

FN(t) = etKN FN(0), (6) 
with 

FN(0) = ei”“fN(0) 

andf$’ is the full N-particle equilibrium canonical distribution function. 
Here 

(7) 

Gv = f (vi;+ F,+), Vi = m-lp, , 
i=l z z 

vi , ri are the velocity and position of Particle i of mass m, and F( is the force due 
to all other particles. At t = 0, 

f,(k, v, 0) = Q,(U) = .& e-‘*‘$ (9) 

f&, v, 0) = 60 - r”) yd~). (10) 
Thus the generalized diffusion described by fs and I, can also be viewed as a 

relaxation from an initial state in which Particle 1 is fixed at r” and the N - 1 
particles are canonically distributed. The projection operator we use [2] is 

P= ><, (11) 

> = eikrlfNO/yM(vl), (12) 

< = &N eoikrl dv$<‘, s s (13) 

PP = P PF,(t) = > f&k 2190. (14) 
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In addition, 

Q&do) = 0, Q=l-P, (15) 

which secures the absence of a “destruction-type” term. As Zwanzig [4] has shown, 
the convolution type kinetic equation can be readily obtained by applying to the 
Lionville equation the operators P and Q. Introducing the Laplace transforms by 

if(z) = f,” dt e%Y(t), Imz>O, (16) 

we have 

(-iz + KN) r;;, = FhT(O) (17) 

izP& - PFN(0) = PK,P& + PK,Ql’, 08) 

izQflN - QFN(0) = QKNPpM + QKNQfl. 

Eliminating Qfl;, , we find 

(19) 

-izPpN - PFN(0) - PKNPflN = PKNQ -iz +‘QKNQ QKNPJ'N T (20) 

which is the desired kinetic equation. This derivation is in fact well known for the 
case of a decay of a prepared state [5]. In our case, 

PKNPpN = > ikv,f8(v1) (21) 

and the kinetic equation takes the form 

(-iz + iWf,Or, vl , 4 -.A@ = 0) = (&Q -iz +lQKNQ Q&)-f& v1 , 4 

(22) 

The first desirable feature is the trivial ease with which the case of noninteracting 
particles is obtained; the r.h. s is equal to zero, and 

(-iz + ikv,)f,(v,) -f?(t = 0) = 0. (23) 

This is to be contrasted with the so-called memory functions, which were introduced 
to simulate the convolution integral on the r.h.s of (4), avoiding simultaneously 
the velocity-dependence offs . One writes (for our case of IS) 

f I&, t) = It d7 K(T) I,(t - T), 
0 

(24) 
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hoping that K(t) would show a simpler structure than Z, [6]. Unfortunately, already 
for the case of ideal noninteracting gas, where Z,(k, t) is a known (gaussian) 
function, the apparent simplicity of (24) breaks down, because K(t) cannot be 
expressed in terms of elementary functions and no interpretation of it has ever 
been suggested. 

The second desirable feature of (4) is that the short-time behaviour of fS is 
reproduced exactly. This is to be contrasted with the Resibois kinetic equations 
which for our case take the form, also exact at all times, 

(i + ikv)J;(r) = It d7 $(4fdt - 4 + 90). (25) 
0 

The operators + and D are, however, so defined that at short times both diverge 
for ordinary intermolecular potentials. This happens when one attempts 
a power series development #(T) = #(O) + T#’ + (~~/2!) #’ + ..* and g(1) = 
D, + tD, + (t2/2) D2 + ..*; all coefficients #(n) and D, diverge for the simple 
reason that the r-integrals in the position space are not “protected” by any 
exp(--j3uij) factors. Thus, integrals 

1 
VN j &N e--iJJ’k,ri FJT,, . . . e %‘rj + f . . . 

3 2 

will not be finite for intermolecular potentials which do not have Fourier trans- 
forms. No resummation (similar to the one that is performed to obtain the 
Boltzmann equation) is possible since #(O) contains two vertices (two forces FijF&) 
and no more, f(O) contains four forces Fij , etc. 

When the r.h.s of (25) is combined together to yield (4), no divergent terms 
appear, as will be shown below. Therefore, at least in some cases, the division 
of r.h.s. into a diagonal operator (#) + destruction term (9) may be undesirable. 
The immediate cause of these short-time divergencies is remedied by the intro- 
duction of dressed operators like G, instead of bare operators such as $. Inverting 
the Laplace transforms in (22) we find Eq. (4) with 

For time t = 0, 

G(T) = (KNQ e -TQKNQ QKN) (26) 

G(O) = <&QK,+) = WA&) - (KvXKTV) 

The meaning of ) and ( is given by Eqs. (12) and (13). Thus, 

G(0) = j drN eeikrl 5 dv$;l[KNKN - (ikv,)2] eikrlfNo/~M(ol) 

(27) 
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It is remarkable that the exact G(0) is identical with the Fokker-Planck operator 
with a friction coefficient expressed by the canonical average of F,(t = 0) F1(t = 0). 
It is therefore tempting to approximate G(T) by 

GFpC4 = P(T, ~1) : & (& + &) 

with 

This would, however, hardly represent a good approximation at long times for a 
Particle 1 identical to the fluid particles. Similar approximation was used by 
Akcasu et al. [7] who introduced a velocity-dependent time-independent friction 
coefficient. From the general form of G(t) it is clear that a time-dependent 5 would 
represent a superior approximation. 

The general structure of G(7) can be analysed along the following lines: 
The coefficients G, in the power series 

G(T) = f y G, 
n=o . 

can be expressed as 

where the sum is over all partitions of the number IZ + 2 into a set of integers {j}, 
P is the number of partitions made. Thus, 

G, = A, - A,A, - A,A, + AlAlA,, 

G2 = A, - A,A, - A,A, - A,A, + A,AIAl + A,A,A, + AlAlA, - A14, 
(32) 

etc. The operators Aj do not commute, A, = ikv, , and 

Aj = (&j>. (33) 

Several terms besides Go have been calculated by R. Wojnar [8]. For example, 

G’(O) = G, = F,F,: ;(ikv) (/3v + ;). (34) 

The expressions for G”(O), Grn(O) and G’“(O) are already quite complex. Another 
representation of the operator G(T) is the following 

(34 = (& ev - TV& - <&>I(& - <KdD. (35) 



552 STECKI 

In our case, (KN) = ikv, , and 

G(T) = (KNe-T(KN-ikV1)(KN - ikv,)). (36) 

Now, however, the factor exp(ikrJ contained in ) can be commuted with KN - ikv,, 
as 

(KN - &v,) eikrl = eikrlKN (37) 

and hence 

fNO G(T) = j drN dfl+;l(KN - ikv,) emTKNKN - 
%4@1) 

(38) 

Or 

G(T) = s drN dv$;’ & (KN’ - ikvJ eeTKN’KN’, (3% 

with 

KN’ = KN - F, * /%‘I . 

As a first step towards the examination of dense systems, we are currently 
investigating the binary collision limit, for which 

G1ind4 = jjI drl dr, dv2 e-iL’1K,e-“Ka-ik’1’(K2 - ikv,) eikr1g2(r12) qM(v2), 

where gz(r) is the equilibrium radial distribution function equal to exp ---flu(r) 
in the low density limit. The particular case of the Lorentz gas (light Particle 1, 
infinitely heavy scatterers) is amenable to numerical computations. For the 

FIGURE 1 
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hard-sphere potential u(r& it can be shown by a direct calculation that CY&,inary(~) 
reduces to the ordinary Boltzmann (linearized) operator, no matter what values 
are taken by k and z (Im z > 0). For this case and for the Lorentz gas, the kinetic 
equation can be solved explicitly. When we superimpose on the hard core an 
attractive potential, the trajectory of 1 is modified (see Fig. l), and it will be 
instructive to see the k and z dependence of C? for such a particularly simple case, 
as well as the modification of k and z dependence off3(k, v, z), thus introduced. 
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